数学符号√是什么意思?(数学符号大全)

数学符号√是什么意思?

数学符号√是根号。

根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。

严格地说,根号表示非负数的非负平方根。举例说明:因为2=4,(-2)=4,所以2和-2都叫做4的平方根,把其中的“2”用√4来表示,即√4=2;而“-2”就用-√4来表示,即-√4=-2。

数学符号√是什么意思?(数学符号大全)

书写规范

1、写根号

先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。

2、写被开方的数或式子

被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。

3、写开方数或者式子

开n次方的n写在符号√ ̄的左边,n=2(平方根)时n可以忽略不写,但若是立方根(三次方根)、四次方根等,是必须书写。

数学符号大全

1 几何符号

⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △

2 代数符号

∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶

3运算符号

× ÷ √ ±

4集合符号

∪ ∩ ∈

5特殊符号

∑ π(圆周率)

6推理符号

|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←

↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨

&; §

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω

α β γ δ ε ζ η θ ι κ λ μ ν

ξ ο π ρ σ τ υ φ χ ψ ω

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ

ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ

∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮

∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥

⊿ ⌒ ℃

指数0123:o123

上述符号所表示的意义和读法(中英文参照)

+ plus 加号;正号

- minus 减号;负号

± plus or minus 正负号

× is multiplied by 乘号

÷ is divided by 除号

= is equal to 等于号

≠ is not equal to 不等于号

≡ is equivalent to 全等于号

≌ is approximately equal to 约等于

≈ is approximately equal to 约等于号

< is less than 小于号

> is more than 大于号

≤ is less than or equal to 小于或等于

≥ is more than or equal to 大于或等于

% per cent 百分之…

∞ infinity 无限大号

√ (square) root 平方根

X squared X的平方

X cubed X的立方

∵ since; because 因为

∴ hence 所以

∠ angle 角

⌒ semicircle 半圆

⊙ circle 圆

○ circumference 圆周

△ triangle 三角形

⊥ perpendicular to 垂直于

∪ intersection of 并,合集

∩ union of 交,通集

∫ the integral of …的积分

∑ (sigma) summation of 总和

° degree 度

′ minute 分

〃 second 秒

# number …号

@ at 单价

数学符号大全

(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。
(4)结合符号:如小括号“()”中括号“〔〕”,大括号“{}”横线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。
(7)其他符号:α,β,γ 等多个符号

数学符号中的“0”起源于?

关于0的起源,有以下几种观点:

0是极为重要的数字符号,而关於0这个思维的概念在其它地区很早就有。

据历史记载,玛雅人有一个被称为“人类头脑最光辉的产物”的数学体系,玛雅人(或他们的欧梅克祖先)独立发展了零的概念,玛雅文明最早发明特别字体的0。玛雅数字中0 以贝壳模样的象形符号代表。 并且使用二十进制的数字系统;数字以点(·)代表1,横棒(-)代表5。碑文显示他们有时会用到到亿。

这里提到的零,并不是我们所用的阿拉伯数字0,但这应该是最早含有0的概念的数字符号了。

古埃及早在公元前2千年就有人在记帐时用特别符号来记载零。

古巴比伦的文献记载中有0的萌芽。但是与现在不同的是,0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1 1。

在中国很早便有0这个概念,许多文献中均有记载。中国古代使用算筹进行计算,在算筹和算盘上,以空位表示0。

中国远在三千多年前的殷商时期,就采用了十进制记数法,甲骨文中有“六百又五十又九(659)”等数字,明确地使用了十进位。中国周代(前1046年—前256年)金文的纪数法,继承殷商代的十进制,又有明显的进步,十进数量级符号有十、百、千、万、亿,如西周金文“伐鬼方……俘万三千八十一人”,出现了位值记数,例如“俘牛三百五十五“,其中三百五十五写成“三全XX”,前面的“全”是金文的“百”,后面两个XX是五十五,省去了“十”,出现了位置概念,但尚未形成完整的位值制。

公元前400年前后墨子还对位值制进行了论述,这样加上商时期就有的十进位制;十进位值制就正式出现于记载中了。墨子是对位值制

概念进行总结和阐述的第一个科学家。他明确指出,在不同位数上的数码,其数值不同。例如,在相同的数位上,一小于五,而在不同的数位上,一可多于五。这是因为在同一数位上(个位、十位、百位、千位……),五包含了一,而当一处于较高的数位上时,则反过来一包含了五(比如:十位的一就比个位的五大……).十进位值制的发明,是中国对于世界文明的一个重大贡献。

公元前4世纪,中国数学家就已经了解负数和零的概念了。(而在我国远古时代的结绳记数法中,“零”是在对“有”的否定中出现的,意思是“没有”。)

公元1世纪的《九章算术》说:“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学历史家认为是零的概念。(全文见维基文库的《九章算术》)虽然如此,但是当时并没有使用符号来表示零。筹算数码中开始没有“零”的符号,遇到"零"就空位。比如“6707”就可以表示为"┴〧 〨 "(由于七和八没有对应的符号,用商码代替的;毕竟商码来源于算筹数码)。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"〇"的符号出现有关。【印度直到7世纪初,印度大数学家葛拉夫.玛格蒲达才首先说明了0的性质,任何数乘0是0,任何数加上0或减去0得任何数。遗憾的是,他并没有提到以命位记数法来进行计算的实例.】

不过多数人认为,“0”这一数学符号的发明应归功于公元6世纪的印度人。印度文明可远溯到公元前2000年,但他们在公元前800年以前是没有数学的。大约在公元前3世纪以后,印度出现了数的记号,典型的的是婆罗门数字。婆罗门数字的出色之处是它给1到9的每个数都有单独的记号,还没有零和进位记法。他们最早用黑点(·)表示零,后来逐渐变成了“o”。

但是据说公元前2500年左右,印度婆罗门教最古老的文献《吠陀》已有“0”这个符号的应用,当时的零在印度婆罗门教表示空的位置(按照这个说法,中国远古结绳记数法中,〇是在对“有”的否定中出现的,意思是“没有”。也可以算了)。---个人对最后这段存疑问,如果是真的;那么为何公元六世纪印度人还在用黑点作为"零"的符号,至于何时由点转为圆,具体时间已无从考证。(公元718年出书的《开元占经》104卷算法,1089页,译制印度的《九执历》;那个时候印度人的零依然是黑点。)

大约在公元前三世纪,古印度人完成了数字符号1到9的发明创造,但此时还没有“0”。“0”的符号出现,是在1到9数字符号发明一千多年后的印度笈多王朝。刚出现时,它还不是用圆圈;而是用一个黑点来表示。至于何时由点转为圆,具体时间已无从考证。直到公元876年,人们在印度的瓜廖尔(Gwalior)这个地方;发现了一块刻有“27o”这个数字的石碑。这也是人们发现的有关“0”符号的最早记载,但是这个零的符号是个比〇小一圈的圆圈o;也不是现代“0”这个符号的样子。

数学符号√是什么意思?(数学符号大全)

但是如果说符号的话,中国算筹里早已经有空格;后来更是用铜钱在算筹里表示零的符号。此后铜钱演变为〇,作为零的符号;是很正常的事情。在690年时;武则天颁布了则天文字,其中一个字就是“〇”了(比印度的0的小圆圈符号o早出现186年);虽然当时还不是零的意思。而中国古代数学上记录“〇”时是用“囗”来表示的,一方面为了将数字区别开来;更重要的是由于我国古代用毛笔书写。而毛笔行书连笔书写的习惯,写“〇”比写“囗”要方便得多,所以零逐渐变成按逆时针方向画“〇”;这就是中国的零号。1180年金朝《大明历》中就有“四百〇三”,“三百〇九”等数字。

据英国著名科学史专家李·约瑟博士的考证,“0”产生于中印文化,是中国首先使用的位值制促进了零的出现。印度是在中国筹算和位值制的影响下才创造“0”符号的。中国远在三千多年前的殷商时期,就采用了位值制,甲骨文中有“六百又五十又九(659)”等数字,明确地使用了十进位。

而印度一个黑点,又如何演化成〇的符号呢?不知道有没有演变过程的证据?而且古印度是没有十进位值制的,中国是全球最早有十进位值制的。古埃及虽然是十进制,但是没有位置制。巴比伦虽然有位置制,但是巴比伦是60进制;只有中国有同时满足十进制与位置制而来的十进位值制。但是中文文献中〇的符号表示“0”最早出现时间,也是无法考据的。宋代蔡沈《律率新书》(1135一1198)中用方格“囗”表示空缺。1180年金朝《大明历》中有“四百〇三”,“三百〇九”等数字。公元1247年,秦九韶在其著作数书九章中使用符号“〇”来表示零的概念。李冶《测圆海镜》(1248)第十四问中就有“0”的图像。

总之,有关〇的起源还没有一个定论,但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。

数学符号的由来是什么?

1、“+”号,是15世纪德国数学家魏德美创造的。在横线上加上一竖,表示增加。

2、“-”号,也是魏德美创造的。从加号中减去一竖,表示减少。

3、“×”号,是18世纪美国数学家欧德莱最先使用的。它表示增加的另一种方式,所以把加号斜过来写。

4、“÷”号,是18世纪瑞士人哈纳创造的。它表示分解的意思,用一条横线把两个圆点分开。

5、“=”号,是16世纪英国学者列科尔德发明的。

数学符号√是什么意思?(数学符号大全)

数学符号的意义:

人类的一切智力活动认识活动,都直接或间接地建立在符号的基础上。当代数学符号是经历了漫长的历史而形成和发展起来的。借助于符号使数学更加简便了数学符号使数学发展的速度加快了。可以说,数学是数学符号的学问。

当代数学符号大致分为4类:用符号表示数与量;用符号表示某种运算,即运算符号;用符号表示某种关系,即关系符号;仅仅作为记号的一种符号。

研究数学问题的方法之一是明白数学符号的含义,灵活运用数学符号。这样,就能更有效地从实际问题中概括出变量之间的关系,并用数学符号来表示。用数学符号代表数量关系和变化规律,是用抽象的方法进一步表明数学问题的内部联系。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 ttt5cn@163.com 举报,一经查实,本站将立刻删除。

发表评论

登录后才能评论